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Abstract: This paper presents a deep neural network (DNN) based design optimization methodology
for dual-axis microelectromechanical systems (MEMS) capacitive accelerometer. The proposed
methodology considers the geometric design parameters and operating conditions of the MEMS
accelerometer as input parameters and allows to analyze the effect of the individual design parameters
on the output responses of the sensor using a single model. Moreover, a DNN-based model allows to
simultaneously optimize the multiple output responses of the MEMS accelerometers in an efficient
manner. The efficiency of the proposed DNN-based optimization model is compared with the design
of the computer experiments (DACE) based multiresponse optimization methodology presented in
the Literature, which showed a better performance in terms of two output performance metrics, i.e.,
mean absolute error (MAE) and root mean squared error (RMSE).

Keywords: deep neural network; dual-axis MEMS accelerometer; microelectromechanical systems
(MEMS); multiresponse optimization; deep learning (DL); neural network

1. Introduction

MEMS inertial sensors, including accelerometers and gyroscopes, are commonly used
in various applications such as motion sensing, navigation systems, vibration monitoring,
and structural health monitoring [1-4]. The small size, low power consumption, and low
cost of these micromachined sensors make these sensors an excellent alternative to the
traditional macroscale inertial sensors. The function of MEMS accelerometers is generally
based on different transduction principles such as electrostatic [5,6], piezoelectric [7],
piezoresistive [8], and optical [9]. Among these, capacitive MEMS accelerometers are most
widely used for different applications, owing to their relatively high dynamic range, small
size, and low cost [10].

In the development cycle of MEMS in general and MEMS inertial sensors in partic-
ular, it is important to analyze and predict the effect of the geometric design parameters,
microfabrication process constraints, and device operating conditions on the output perfor-
mance characteristics of the sensor. The optimization of MEMS accelerometers is generally
carried out by changing one design parameter at a time and estimating its effect on an
output response using mathematical models, finite-element-method (FEM) simulations,
or topology optimization approaches [11-15]. The capacitive MEMS accelerometers are
multiphysics devices which involve a coupled field electro-structural-thermal interaction,
and the output performance characteristics of these sensors generally have a contradicting
dependence on geometric design parameters and operating conditions. This requires a
comprehensive design optimization methodology that allows the MEMS designer to opti-
mize the output performance characteristics of MEMS sensors simultaneously with respect
to the device geometric parameters and operating conditions. The design of computer
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experiments and machine-learning-based optimization techniques have been presented in
the Literature for the multi-response optimization of MEMS accelerometers [16,17]. In [17],
a machine-learning-based method was proposed for optimization of such parameters based
on training a separate model for each output response. However, the solution was not
generalizable and had a higher complexity due to the need for training as many models
as the number of output responses. It would instead be desirable to have a single uni-
fied generic model that enables simultaneous prediction of all the output responses in an
efficient manner.

Recently, the use of deep-learning-based approaches have shown highly encouraging
results for such combinatorial optimization problems in other fields. However, their use
and adoption in the MEMS field is still at its infancy. Deep learning is a subset of machine
learning that uses neural networks with multiple layers to learn complex patterns in
data [18,19]. It has gained popularity due to its ability to effectively and efficiently learn
from large amounts of data and solve complex problems that were previously considered
unsolvable [20,21].

To this end, this paper proposes an end-to-end deep-neural-network-based methodol-
ogy that is aimed at optimization of design parameters by relying on a unified framework
that does not require the learning of multiple separate models, and leads to an efficient
simultaneous prediction of the accelerometer output characteristics. Indeed, the proposed
method allows analysis of the effect of the geometric design parameters and operating
conditions on the output performance characteristics of a capacitive MEMS accelerometer
in an effective manner.

2. MEMS Accelerometer Design

The MEMS accelerometer design considered for the implementation of the proposed
deep-neural-network-based optimization methodology is shown in Figure 1. The MEMS
accelerometer design allows to measure input acceleration in two in-plane axes, thus
making it a 2-DoF design. The design consists of a central proof mass with capacitive
electrodes attached on the four sides. The T-shaped mechanical suspension beams attached
on the four corners of the central proof mass allows to measure input acceleration in both
x-axis and y-axis, while minimizing the cross-axis coupling. For an input acceleration in
any axis, the proof mass displaces, and this displacement is measured by using stator and
rotor capacitive combs attached on the sides of the proof mass. The stator and rotor combs
are arranged in a gap-antigap configuration with a minimum gap value of 2.5 pm, which is
defined as per the microfabrication process constraints of the multi-project-wafer-based
SOIMUMPs process offered by MEMSCAP Inc., USA [22]. The displacement in the proof
mass, corresponding to an input acceleration, results in an air gap change between the
stator and rotor combs which leads to a net capacitance change. This net capacitance change
is used as an output metric for the measurement of an input acceleration. The dynamic
response of the MEMS accelerometer is strongly dependent on the mechanical compliance
and stiffness of the suspension beams, which is defined by the geometric dimensions of the
beams. Similarly, the net capacitance change for an input acceleration is strongly dependent
on the initial air gap between the stator and rotor combs. In addition to the geometric
design parameters, the performance of the MEMS accelerometer is affected by the operating
temperature and air pressure conditions, which has been discussed in detail in [6,23]. In
this work, we have considered both the MEMS accelerometer geometric design parameters
and operating conditions as parameters for the optimization.
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Figure 1. The 2-DoF MEMS capacitive MEMS accelerometer design [17].

The output characteristics considered for simultaneous optimization of the MEMS
accelerometer are the central proof mass displacement for an input acceleration, the natural
frequency, the pull-in voltage between the stator and rotor combs, the change in the
capacitance between the stator and rotor combs for an input acceleration, and Brownian
noise equivalent acceleration (BNEA).

3. Basics of Deep Learning Model

This section is aimed to develop some background of deep learning for a reader to
facilitate an easier understanding of the proposed framework (Section 4) that is built on
using these concepts.

The elementary unit of a deep learning network architecture is called a perceptron or
an artificial neuron cell. When multiple perceptrons are combined, they form a complex
logical system which is referred as a neural network. The simplest form of a perceptron is
equivalent to an equation of a line. For the equation for a single perceptron unit, the slope
of line (m) is replaced with weights (W), input (x) is replaced with input (X), y-intercept
(c) with bias (B), and output (y) is replaced with function of input (f(X)), as shown in
Equation (1) [24].

y =mx+c= f(X) =WX+B 1)

y = g(f(X)) )

The output response f(X) is passed through an activation function to add non-linearity
in the perceptron unit to make it able to separate data that is not separable by straight
lines. In Equation (2), g represents the activation function that is applied to f(X) to obtain
the final output response y. Figure 2a shows the schematic representation of a perceptron
with single value input. Multi variable input is represented as x1, Xy, ... , Xn, where each x
corresponds to an input variable, and each has a corresponding weight (w1, wp, ..., wp),
as shown in Figure 2b. For a simpler notation, the perceptron and activation function can
be presented as a combined unit, as illustrated in Figure 2c.
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Figure 2. (a) Perceptron with single value input, (b) perceptron with multi-value input, and
(c) merging perceptron and activation function.

Multiple perceptrons can be stacked in the vertical direction to form a layer (e.g., see
Layer 1 in Figure 3). Each connection in Figure 3 has a corresponding weight, and the
weights are stored in a 2D matrix and represented as W. The final output of this neural
network is calculated using Equation (3). The left part of this equation represents the
calculation occurring between Layer 0 (input) and Layer 1; first the dot product between
input (X) and weight (W) is taken and bias (B;) is added to the product. This submission
is passed through an activation function (g) to obtain the output for each perceptron in
Layer 1 which is represented as Y. The output of Layer 1 acts as the input to the next layer,
Layer 2 (output). The calculation between Layer 1 and Layer 2 (output) is the right part of
Equation (3), W, and B, are the weights and bias for Layer 2, Y7 act as the input for this
layer, and Y; is the final output of the neural network.

Y, = g(W1X+ B1), Y, = g(WzYl + B2) 3)

Such a combination of perceptrons is collectively called a neural network (NN) [25].
Furthermore, a NN can be divided into three parts, an input layer (Layer 0), hidden
layer (Layer 1), and an output layer (Layer 2), as shown in Figure 3. When there are
2 or more hidden layers, the NN is called a deep neural network. Since, on its own, a
perceptron is simply an equation of a straight line (linear solution), an activation function is
therefore needed to introduce non-linearity into the perceptron. Examples of some available
activation functions include Sigmoid, Tanh, Rectified Linear Units (ReLU), Exponential
Linear Unit (ELU), Swish, and Mish [26]. The learning process of a NN is based on a
backpropagation algorithm [27] which uses gradient methods for decreasing the output
error. After each training step, the output error is calculated using the prediction made
by that current state of the NN. Back propagation is used to calculate the error for each
neuron by going through the layers of NN in the reverse direction. Based on this calculated
error for each neuron, the weights of the NN are updated. In summary, back propagation
updates the weights of the NN to minimize the output error. To improve the generalization
ability of NN, hyperparameter tuning [28] is required. A gradient-based algorithm [29] may
get stuck at a local minima instead of reaching the global minima, or might even diverge
instead of converging to a minima. Hence there is a requirement to select an appropriate
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combination of activation function, learning rate, number of epochs, batch size, and weight
initializer, along with the number of hidden layers and number of perceptrons per layer.
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Figure 3. Representation of a neural network containing three inputs and a single output.

For the multiphysics design optimization of the MEMS accelerometer, we have cre-
ated a deep neural network that is composed of 4 hidden layers such that each layer
has a certain number of perceptrons along with their corresponding activation function
for that layer. The number of layers and the number of perceptrons are set empirically.
The selection of an activation function depends on the problem at hand. For the hid-
den layers, we experimented with different activation functions and obtained the best
results with ELU in the first hidden layer, and ReLU in the preceding three hidden layers,
Equations (5) and (6), respectively. Both ELU and ReLU affect the negative values. ELU
uses an exponent operator for its function while ReLU sets the negative value to zero. In
Equations (4)—(6), x is the value obtained after the dot product between the input and the
weights and the addition of bias to this product.

g(x) =x @)
s ={ 120 ©)

x, x>0

§(x) = { exp(x)—1, x <0 ©)
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The linear activation function is used in the last layer because the optimization of the
MEMS accelerometer can be considered a regression problem in which the prediction of
continuous values is desired.

4. Proposed Deep-Neural-Network-Based Framework
4.1. Design, Response, and Desirability Value Details

Table 1 shows the design variables (x1, Xy, ... , xg) considered for the multiphysics
design optimization of the MEMS accelerometer. These design parameters are the geometric
parameters and the MEMS accelerometer operating conditions. The significance of the low
and high levels for the design parameters has been discussed in [17]. The output responses
considered for the optimization are natural frequency (y;), proof mass displacement (y»),
pull-in voltage value (y3), capacitance change corresponding to the input acceleration (ya),
and Brownian noise equivalent acceleration (BNEA) (ys).

Table 1. Design parameters for the MEMS device.

Notation Design Parameters Low Level High Level

X1 Overlap length of comb 150 um 250 pm
Xp Length of suspension beam 1 400 pum 500 pm
X3 Length of suspension beam 2 500 um 500 um
X4 Width of suspension beam 6 um 8 um

X5 Input acceleration lg 25g

Xg Operating temperature 233.15K 373.15K
Xy Operating pressure 100 Torr 760 Torr
X8 Frequency ratio 0.1 0.5

4.2. General Working of the Proposed Optimization Framework

The proposed optimization framework for the MEMS accelerometer is based on using
a cascade of two separate neural network models, each relying on the architecture as
discussed in the previous section. The first model, referred to as the Y model, is designed
to predict the output response characteristics of the MEMS accelerometer (y1, y2, ..., ¥s5)
using the input design parameters (xj, x2, . .. , Xg). The second model is implemented for
the simultaneous optimization of the output characteristics of the MEMS accelerometer
with respect to the input design parameters, and is referred to as the D model. While
the Y model enables a simultaneous prediction of the five output characteristics of the
MEMS accelerometer, it does not allow to simultaneously optimize these five output
characteristics with respect to the design parameters. The simultaneous optimization of the
output characteristics is achieved through the D model, which is based on maximizing the
desirability function corresponding to the optimization objective function [25,30]. Based
on the output of the D model, the values of the eight input design parameters are ranked
and the combination which gives the maximum desirability values is presented as the
optimized solution. Figure 4 provides a high-level pictorial overview of the working of the
proposed framework.

X values D value

Figure 4. General working of the proposed parameter optimization methodology for the MEMS
accelerometer. It is based on calculating the desirability (D) value for optimization using a cascade of
two Deep Neural Networks (i.e., Y model and D model). X values correspond to (xq, X2, ..., Xg); Y
values correspond to (y1, y2, - - . , ¥5); and D value refers to the desirability value.
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4.3. Output Response Prediction Model

Figure 5 represents the deep neural network that is used to train the Y model for
the output responses prediction. The input layer contains input features (x1, x2, ... , Xg)
corresponding to design variables and the output layer contains the corresponding output
responses (y1, V2, - - . , ¥5) that are to be predicted.

Input Layer Hidden Layers Output Layer
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Figure 5. Representation of the architecture of the Y model.

—

To train a model for predicting Yp values for a set of X values, we used the data
provided by [17]. The data has 80 rows of values, each row has a set of X values generated
using Latin hypercube sampling and will be represented as Xg; Ref. [17] obtained the Y
values after performing simulations and these values will are represented as Yts. For our
work we have normalized the values between 0 and 1 to standardize the scale of each input
and output value. A split of 80/20 was made for hyper-parameter tuning and training of
the model. Here, the assumption is that the simulated data (as provided by [17]) used for
training the Y model was generated taking into account the realistic design conditions of
the MEMS accelerometer. Figure 6 shows the steps involved in the training process as well
as the evaluation of the Y model.

)
Xgvalues —»1 'y Model

—» Yp values
Y1g values —»| (Training) i
~—

)
Y1g values —» Error

, —>» Errors
Yp values —»{ Calculation
—

Figure 6. Steps for the training process and the evaluation of the Y model.

In comparison to [17], where five separate individual models were trained to obtain
each output response value, the proposed method is based on training a single model to
obtain all the output response values. The Y model is evaluated according to two error
metrics, which are mean absolute error (MAE) and root mean squared error (RMSE),
calculated using Equations (7) and (8), respectively.

1k
MAE = £ Y |Voi — ypil @)
i=1
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RMSE = Voi — ypi)° 8)

=

k

i=1
where y,; is the true output value at index i and y,; is the corresponding prediction value,
and k is the total number of samples. The errors obtained are compared with the error
values of [17]. It is observed that the proposed Y model has consistently outperformed [17]

as shown in Table 2.

Table 2. Comparison of the predicted output responses (y1, y2, . .. , y5) obtained using the proposed
Y model with those obtained using the method in [17], in terms of MAE and RMSE.

Output Response MAE RMSE
Proposed [17] Proposed [17]
Natural frequency (y1) 12.67 Hz 29.64 Hz 15.41 Hz 41.19 Hz
Proof mass displacement (y7) 0.004 um 0.024 um 0.004 um 0.034 um
Pull-in voltage (y3) 0.065V 0.085V 0.072V 0.134V
Capacitance change (y4) 5.292 fF 10.179 fF 6.28 fF 14.05 fF
BNEA (ys) 0.004 ug/vHz 0.019 ug/vHz 0.005 ug/vHz 0.029 ug/vHz

4.4. Effect of Design Parameters on the Output Responses

The effect of variation of each design parameter (x1, Xy, . . . , Xg) on the output responses
(Y1, V2, --- , Vs5) is also observed to obtain a deeper insight into their respective behaviors.
In this regard, each input parameter is varied across its range while keeping all of the
remaining input parameters fixed at the average of the low and high levels, as defined in
Table 1. Since each output response has a different range and unit, they are normalized
between 0 and 1 for comparisons.
Figure 7 shows the effect of variation of the overlap length of comb (x;) on yy, y2,
., y5. The graphs show that there is a much stronger impact of the variation of x; on
the pull-in voltage (y3) and BNEA (ys) than on the natural frequency (y;), proof mass
displacement (y;), and capacitance change (y3). The results show that with an increase in
the x1, the pull-in voltage value decreases and BNEA increases for the MEMS accelerometer.

0.9

—— Natural frequency (y1) Proof mass displacement (y:) ~ —¥— Pull-in voltage (ys) ~ =M= Capacitance change (y:) ~ —#— BNEA (y5)

o
)
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~
L

ot
w
1

Normalized output response (Y values)
=} =
[\S} W

e
-

150 160 170 180 190 200 210 220 230 240 250

Overlap length of comb (x1)
Figure 7. Effect of variation of the overlap length of comb (x;) on the output responses y1, y, ..., 5.
Key. yi: natural frequency; y,: proof mass displacement; y3: pull-in voltage; y,: capacitance change;
and y5: BNEA.
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Figure 8 shows the effect of variation of the length of the suspension beam 1 (xp) on yj,
V2, ..., y5. The results show that with an increase in the x; value, the natural frequency
and pull-in voltage value for the MEMS accelerometer decreases while the proof mass
displacement and capacitance change for an input acceleration increases. Moreover, the
effect of change in the x, on the MEMS accelerometer BNEA value is negligible.

0.7

—— Natural frequency (yi) ~ —@— Proof mass displacement (y:) ~ —%¥— Pull-involtage (y) ~ —#— Capacitance change (ys) ~ —#— BNEA (ys)

o
(=2}
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<o
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Normalized output response (Y values)
o
W
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e

o
w
1

e
o

400 410 420 430 440 450 460 470 480 490 500
Length of suspension beam 1 (x2)
Figure 8. Effect of variation of the length of the suspension beam 1 (x7) on the output responses y1, y2,
., y5. Key. y1: natural frequency; y,: proof mass displacement; y3: pull-in voltage; y4: capacitance
change; and ys: BNEA.

Figure 9 shows the effect of the variation of the length of suspension beam 2 (x3) on
V1, V2, --- , 5. The strongest effect of the variation of xj is clearly visible on the natural
frequency (y7) that matches with the findings of [17]. Additionally, the graph also shows
that x3 also contributes at varying levels towards the proof mass displacement (y3), pull-in
voltage (y3), and capacitance change (y4).
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S G
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Figure 9. Effect of variation of the length of suspension beam 2 (x3) on the output responses y1, y2,
., 5. Key. y1: natural frequency; y,: proof mass displacement; y3: pull-in voltage; y4: capacitance
change; and ys: BNEA.
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Figure 10 shows the effect of variation of the width of the suspension beam (x4) on
Y1, Y2, -- -, ¥5. The graph shows that there is a significant impact of variation of x4 on the
natural frequency (y;), proof mass displacement (y,), pull-in voltage (y3), and capacitance
change (y4).

1.0

—— Natural frequency (yi) ~ —@— Proof mass displacement (y:) ~ —%¥— Pull-involtage (y) ~ —#— Capacitance change (ys) ~ —#— BNEA (ys)
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Width of suspension beam (x4)

Figure 10. Effect of variation of the width of the suspension beam (x4) on the output responses yy, y2,
., y5- Key. y1: natural frequency; y,: proof mass displacement; y3: pull-in voltage; y4: capacitance
change; and y5: BNEA.

Figure 11 shows the effect of variation of the input acceleration (x5) on y1, y2, ..., ys.
It is evident from the graphs that x5 strongly impacts the proof mass displacement (y,) and
capacitance change (y4).

0.9
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Figure 11. Effect of variation of the input acceleration (x5) on the output responses yy, y2, ..., 5.
Key. yi: natural frequency; y,: proof mass displacement; y3: pull-in voltage; y4: capacitance change;
and y5: BNEA.

Figure 12 shows the effect of variation of the operating temperature (xg) on yy, y2,
., ¥5. The graphs that only BNEA (ys) is impacted by the variation of x4, whereas the
remaining output responses are not perturbed.
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Figure 12. Effect of variation of the operating temperature (xg) on the output responses yy, y2, ... , V5.

Key. yi: natural frequency; y,: proof mass displacement; y3: pull-in voltage; y4: capacitance change;
and y5: BNEA.

Figure 13 shows the effect of variation of the operating pressure (xy) onyy, y2, ..,
y5. The behavior is similar to that observed for the case of xg, i.e., x7 also impacts only the
BNEA (ys), without really perturbing the remaining output responses.

0.9

—8— Natural frequency (yi) ~ —@— Proof mass displacement (y:) ~ —%— Pull-in voltage (ys) ~ =M= Capacitance change (y:) ~ —#— BNEA (ys)

o
)
1

o
93
L

o
(=)}
1

o
W
1

o
»~
1

*
*
*
4
L 2
*
L
)

(=]
W
1
4
N
L 3

Normalized output response (Y values)
5
|

o
—_
1

o
=)

100 160 220 280 340 400 460 520 580 640 700 760

Operating pressure (x7)
Figure 13. Effect of variation of the operating pressure (xy) on the output responses yi, ya, ..., ys.
Key. yi: natural frequency; y,: proof mass displacement; y3: pull-in voltage; y,: capacitance change;
and ys: BNEA.

Figure 14 shows the effect of variation of the frequency ratio (xg) on y1, y2, ..., ys.
There is not a strong impact of variation of xg on any output response that is in line with
observations of [17]; though y; and y, appear slightly perturbed.
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Figure 14. Effect of variation of the frequency ratio (xg) on the output responses yi, ya, ..., y5. Key.
y1: natural frequency; y,: proof mass displacement; y3: pull-in voltage; y4: capacitance change; and
ys: BNEA.

The results presented in Figures 6—13 allow to analyze the effect of the design pa-
rameters of the MEMS accelerometer on the five output responses simultaneously. The
sensitivity analysis for each design parameter has been performed in terms of the effect of
the variation of the design parameters on the output responses, and then comparing them
with the results presented in [17], which showed a consistent behavior for each design
parameter. Thus, the proposed deep-learning-based Y model allows to efficiently explore
the MEMS accelerometer design space. Additionally, the effectiveness of the model has
already been quantitatively demonstrated in the form of the comparison of the predicted
output responses (y1, y2, . . . , ¥5) obtained using the proposed Y model with those obtained
using the method in [17], based on MAE and RMSE scores (Table 2). Moreover, unlike
the procedure adopted in [17] for generating the simulated data that was extremely time
consuming (taking extended periods of time to complete), the proposed Y model (once
trained) offers an alternative for generating more data (where needed) in the design space
in an accurate and time-efficient manner without the need to perform simulations over
longer periods of time. In fact, in the next section, the trained Y model is used to generate a
larger dataset as required for training the D model.

5. Multiresponse Optimization Using D Prediction Model
5.1. Training of the D Prediction Model

For the training of the D model, we use a larger dataset generated using the Y model.
The deep neural network used for training the D model is exactly the same (except, of
course, the input and output layers) as the one for the Y model (Figure 5). As for the dataset,
it has been generated by first creating a list of different combinations of X inputs. This
was performed by incrementing from the low and high level of X values. The increment
was set between 15 and 25 percent of the low level, which generated a set of X values,
referred to as X values (Figure 15). The Xg values are passed to the Y model to obtain
the corresponding Yg values. For each Y value, the Dg value was estimated using the
same approach used in [17], and this obtained D value is represented as the Drg value, or
true value of desirability for the generated set of Xg values. A total of 3125 rows of values
were obtained. All the values were normalized between 0 and 1 to standardize the scale of
each input and output value. A split of 80/20 was made for hyperparameter tuning and
training of the model. For training of the D model, the input layer therefore contains yy, y»,
., y5 and the output layer contains only a desirability value. The manual formula-based
calculation of D (as in [17]) is thus replaced with a robust deep-learning-based D model.
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Figure 15. Steps involved in the training process of the D Model.

5.2. Multi-Response Optimization

To find the optimized values for X with respect to maximum D, we have proposed
a method as illustrated in Figure 16. For the optimization process a dataset of about
100 K values was generated for the X values with an increment value below 10 percent
of the lower bound; this set of X values is represented as Xg. The X is fed through the
Y model to obtain the YR. The obtained Yy values are fed to the D model to obtain the Dg,
which are the D values for the corresponding design parameters. Then, the index of the
maximum D value is searched, and the corresponding Y and X to this maximum index are
considered as the optimized xj, Xy, ..., xg values. Table 3 presents the values obtained
from the proposed method and the values reported in [17].

X r \
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Figure 16. Final Optimization pipeline.
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Table 3. Comparison of the obtained optimized X values (xq, X, . .. , Xg) using the proposed method
with those reported in [17]. The corresponding Y values (y1, y2, ... , y5) are also listed.

Optimized Values Reported in [17]

x1 X2 X3 Xa X5 X6 X7 Xg
Design Parameters (X values)  153.6 um  403.6 pm 500 pm 6.26 um 25¢g 300 K 760 Torr 0.50

Y1 Y2 Y3 Ya Ys
Output Responses (Y values) 3036.4Hz  0.903 pm 6.76 V 676.2 fF 0.81 ug/ VHz

Optimized Values Obtained Using the Proposed Method.

x1 X2 X3 X x5 X6 X7 xg

Design Parameters (X values)  150.0 pum  430.0 pm 500 pm 6.40 um 25¢g 300 K 760 Torr 0.45

Y1 Y2 Y3 Ya Ys

Output Responses (Y values)

3160.0Hz  0.723 um 722V 571.0fF  0.83 ug/vHz

To further validate the obtained results, we performed the statistical significance
testing at the standard 5% significance level using the two-sample t-test. The Y values
(y1, v2, ..., y5) predicted using the optimized X values (xi, X3, ..., Xg) based on the
proposed method are listed in Table 3. For comparison, we computed the Y values (referred
to as observed Y values) by performing FEM simulations in CoventorWare® software
(Coventor, Raleigh, NC, USA) using the same X values as obtained based on the proposed
method. The computed observed Y values are as follows: y; = 3096.43 Hz, i, = 0.676 um,
y3 =7.0303 'V, y4 = 521 {F, and y5 = 0.7959 pg/ V/Hz. Here, the t-test is performed to test
the null hypothesis that the data in the two samples (predicted Y values and observed
Y values) is derived from independent random samples having normal distributions of
equal means and equal but unknown variances. The results of the t-test show that the null
hypothesis is not rejected with p-value = 0.98, thus confirming that the data in the two
samples is statistically highly similar.

6. Conclusions

This paper proposed a design optimization methodology for a dual-axis microelec-
tromechanical systems (MEMS) capacitive accelerometer based on the use of a cascade of
two deep neural network (DNN) models. Each model is made up of 4 hidden layers. The
first hidden layer is composed of 128 perceptrons and ELU as activation function. The other
three layers have 256 perceptrons and ReLU as activation function. A linear activation
function was used in the output layer, as a regression system is required. The first instance
is named as Y model and is used to predict the output response values. Y Model was
trained on the original 80 values, as made available by [17]. Using the trained Y model
and the ranges of design parameters, a larger dataset of 3125 values was generated. This
generated dataset was used to train the second instance that is named as the D model. The
output of the D model is the desirability value on which the design parameters are ranked
and accordingly optimized.

The proposed method enabled an analysis of the effect of the individual design pa-
rameters on the output responses of the sensor using Y model. Additionally, the D model
allowed a simultaneous optimization of the multiple output responses of the MEMS ac-
celerometers in an efficient manner. Compared to the work [17] in which five separate
models based on the Gaussian process were trained (one for each output response), plus
the use of a desirability function, the proposed method is computationally less complex
and more efficient as it offers a unified solution using a DNN model (replacing five separate
models of [17]), which has been demonstrated to be more accurate and effective as com-
pared to [17]. The results of the proposed method are also validated by means of statistical
significance testing.
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